LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - **NOVEMBER 2024**

PST1MC03 - STATISTICAL MATHEMATICS

L	pate: 13-11-2024 Dept. No.	Max.: 100 Marks
Т	ime: 01:00 pm-04:00 pm	
SECTION A – K1 (CO1)		
	Answer ALL the questions	$(5 \times 1 = 5)$
1	Fill in the blanks	,
a)	Let $\{a_n\}$ be a sequence with $a_{n+1} \leq a_n \ V \ n \in \mathbb{N}$ then $\{a_n\}$ is called a	sequence.
b)	Every monotonically decreasing sequence which is bounded below co	onverges to its
c)	$\sum \frac{1}{n^p}$ converges if	
d)	Let A be a 4x4 singular matrix then the rank of the matrix A is	·
e) Let Tr(A) denote trace of the matrix A and then Tr(A) is sum of eigen values.		
SECTION A – K2 (CO1)		
	Answer ALL the questions	$(5 \times 1 = 5)$
2	True or False	
a)	Condition for maximum of a function $f(x)$ at a is that $f'(a) = 0$ and $f''(a) > 0$.	
b)	A bounded sequence always converges.	
c)	Let $a_n = (-1)^n$ then -1 and 1 are the two limit points of the sequence a_n	
d)	The maximum possible value for rank of A where A is a 3x4 matrix is	
e)	The number of linearly independent vectors in the matrix $A = \begin{bmatrix} 3 & 2 \\ 2 & 4 \\ 0 & 1 \end{bmatrix}$	0]
	The number of linearly independent vectors in the matrix $A = \begin{bmatrix} 2 & 4 \end{bmatrix}$	$\frac{1}{2}$ is 3.
		5]
SECTION B – K3 (CO2)		
	Answer any THREE of the following	$(3 \times 10 = 30)$
3	(i) Prove that the function $\left(\frac{1}{x}\right)^x$, $x > 0$ has a maximum at $x = 1/e$.	(6 Marks)
	(ii) Determine $\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$.	(4 Marks)
4	If $f:[a,b] \to R$ is a bounded function and $P,P' \in P[a,b]$ such that $P \subset P'$ then prove	
	$(a) L(P,f) \le L(P',f) \qquad (b) U(P,f) \ge U(P',f)$	(5+5 Marks)
5	Show that R ⁿ is a vector space over the field F.	,
6	Discuss various types of quadratic forms and explain the conditions to classify the type of quadratic	
	form based on rank, index, and canonical form.	
7	(i) What is an Annihilating polynomial?	(2 Marks (ii)
	What is meant by Minimal Polynomial of a matrix?	(2 Marks)
	(iii) Find the minimal polynomial of the following matrix:	(6 Marks)
	$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix}$	
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	
	$A - \begin{bmatrix} 0 & 0 & 2 & 0 \end{bmatrix}$	
SECTION C – K4 (CO3)		
	Answer any TWO of the following	$(2 \times 12.5 = 25)$
8	(i) Show that the sequence $\{x_n\}$ defined by $x_1=1$, $x_n=\sqrt{2+x_{n-1}}$	$\forall n \geq 2$
	converges to 2.	(5 Marks)

(ii) Show that $\lim_{n \to \infty} \left[\frac{(n+1)(n+2)...(n+n)}{n^n} \right]^{1/n} = 4/e$. (iii) Show that $\lim_{n \to \infty} \frac{(n!)^{1/n}}{n} = \frac{1}{e}$. (i) Discuss the convergence or divergence of the following series: (5 Marks) (2.5 Marks) (a) $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \cdots$ (b) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$, x > 0(4+4 Marks) (ii) State Leibnitz's Test on alternating series and establish the convergence, absolute convergence of the following series $1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \cdots$ (p > 0). (4.5 Mark Reduce the quadratic form $2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 4x_1x_3 - 4x_2x_3$ to the canonical form and (4.5 Marks) 10 hence find the rank, index, signature and the type of the given quadratic form. (i) Discuss Gram-Schmidt orthogonalization process. (4 Marks) (ii) Let $B = \{(4,-1,-2,2), (8,-1,4,0), (-1,2,0,-2)\}$ is a linearly independent set in \mathbb{R}^4 . Let $\mathbb{U} = \text{Span}(\mathbb{B})$. Determine a orthonormal basis for U using Gram-Schmidt orthogonalization process. (8.5 Marks) SECTION D - K5 (CO4) Answer any ONE of the following $(1 \times 15 = 15)$ Explain the following tests for convergence of a series: 12 (i) D'Alembert's Ratio Test (ii) Cauchy's Root Test (iii) Raabe's Test (iv) Logarithmic Test (v) D'Morgan and Bertrand's Test (3+3+3+3+3)(i) Use diagonalization method to determine whether the given matrix A is diagonalizable, if so 13 determine the diagonal matrix D such that $D = P^{-1}AP$ $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}.$ (7 Marks) (ii) Which among the following are linear transformation? Justify your answer. (8 Marks) (a) T(x, y) = x - y (b) T(x, y, z) = (z, x+y) (c) T(x, y) = xy (d) T(x, y, z) = 2x - 3y + 4z**SECTION E – K6 (CO5) Answer any ONE of the following** $(1 \times 20 = 20)$ (i) What are upper and lower Darboux Sums? Explain with an example. 14 (4 Marks) (ii) What is Riemann Integral? Explain upper and lower Riemann Integrals. (4 Marks) (iii) Compare $L(P_1,f)$ with $L(P_2,f)$ and $U(P_1,f)$ with $U(P_2,f)$ for the function f(x) = x on [0,1] where $P_1 = \{0, 1/4, 2/4, 3/4, 1\}$ and $P_2 = \{0, 1/5, 1/4, 2/4, 3/4, 4/5, 1\}$. (6 Marks) (iv) If f is defined on [0,a] by $f(x) = x^2$ then show that (6 Marks) $Sup\{L(P,f)\} = Inf\{U(P,f)\} = \frac{a^3}{3}$. (i) Determine the eigen values and eigen vectors of the following matrix: 15 (15 Marks) $A = \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \end{bmatrix}$ and hence establish spectral decomposition of A. (ii) Show that the vectors (1,-1,0,3), (-2,1,2,4), (3,0,0,0), (4,3,2,-2) are linearly dependent using matrix determinant. (5 Marks)